算法:C++实现O(n)复杂度内查找第K大数

9 篇文章 0 订阅

题目:是在一组数组(数组元素为整数,可正可负可为0)中查找乘积最大的三个数,最后输出最大乘积。
从国题目我们知道只有两种结果存在:1)三个最大的正整数相乘;2)一个最大的正整数和两个最小的负数相乘。所以我们需要找出数组中最大的三个数的乘积m,然后与数组中最小的两个数相乘再与最大的数相乘的结果n,然后比较m,n,选出最大的数即为最终的结果。
大神无处不在,参考代码牛客网大神分享

#include <iostream>
#include <algorithm>
//分区
int partition(std::vector<int>&vec,int start,int end) {
    int value=vec[end];
    int tail=start-1;
    for(int i=start;i<end;++i){
        if(vec[i]<value){
            tail++;
            std::swap(vec[i],vec[tail]);
        }
    }
    tail++;
    std::swap(vec[tail],vec[end]);
    return tail;
}
long long solve(std::vector<int>&vec,int start,int end,int k) {
    //快排思想,进行分区,快排复杂度为O(nlgn),但取最值只比较分区的一个区间,所以为O(n)
    int now = partition(vec,start,end);
    if(k < now)
        return solve(vec,start,now-1,k);
    else if(k > now)
        return solve(vec,now+1,end,k);
    else
        return vec[now];
}

int main() {
    int n;//要比较的数的个数
    while(std::cin>>n) {
        std::vector<int> vec_i(n,0);//使用vector存储n个数
        for(int i = 0; i < n; ++i) {
            std::cin>>vec_i[i];
        }
        int k;
        //最大的数,index为n-1
        k = n - 1;
        long long x1 = solve(vec_i,0, n-1,k);
        //次大的数,index为n-2
        k = n - 2;
        long long x2 = solve(vec_i,0, n-2,k);
        //第三大的数
        k = n - 3;
        long long x3 = solve(vec_i,0, n-3,k);
        long long Ans = x1 * x2 * x3;//最大的三个数的乘积
        if(n > 3) {
            //最小的数,index为0
            k = 0;
            long long y1 = solve(vec_i,0, n-1,k);
            //次小的数,index为1
            k = 1;
            long long y2 = solve(vec_i,0, n-2,k);
            Ans = std::max(Ans, y1*y2*x1);//两者比较取最大
        }
        std::cout<<Ans;
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值